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CREEP BUCKLING OF A CYLINDRICAL SHELLY
UNDER NON-UNIFORM EXTERNAL LOADS

LARs AKE SAMUELSON?

Lockheed Palo Alto Research Laboratories,
Palo Alto, California

Abstract—A method of analysis is presented for circular cylindrical shells under non-uniform external loads.
The equations are valid for moderately large displacements and take secondary creep into account. Thermal
effects and initial imperfections are included.

As the general equations are non-linear, an iterative method is used in the numerical analysis. The non-
linear terms are at a certain iteration considered as known, generally determined by the previous iteration. They
may thus be regarded as pseudo loads which are added to the actual external load terms. The variables of the thus
linearized differential equations are expanded in Fourier series with respect to the circumferential coordinate.
As a result, a series of sets of ordinary differential equations is obtained, one set for each Fourier index. These
sets of equations are solved by use of a finite difference method. For each load or time step the equations are
repeatedly solved until convergence is obtained.

A computer program was developed and was verified by comparison with known solutions for elastic buckling
of shells. The theoretical behavior of a cylinder under creep is demonstrated for a number of different loading
conditions, in particular the response is studied of an imperfect shell under uniform loads. In the case of external
pressure, the critical time was found to be extremely sensitive to the imperfection shape. For a short cylinder
under axial compression the presence of initial imperfections was shown to shorten the creep life substantially in
comparison with the critical time corresponding to axisymmetrical collapse of the perfect shell.

NOTATION

X, 0,z Coordinates
t Time
T Temperature
u,v,w Displacements in the x, ¢ and z directions
g7 Strains
0,1 Stresses
N In-plane forces

Shear forces -
M Bending moments Defined in Figs. 2 and 3.

PxsPys Pr Body forces

Nonsubscripted, applied axial compressive load
Radius of shell

Length of shell

Wall thickness

Membrane distance in the idealized sandwich shell model, Fig. 1.
Young’s modulus

Poisson’s ratio

Creep constant

Creep exponent

Coefficient of thermal expansion

,D, K Stiffness coefficients defined by (8)-(10)

t The present investigation was sponsored by the U.S. Navy under Contract No. NOOO 3066CO186. The
author is greatly indebted to Mr. B. O. Almroth, of the Solid Mechanics Group for his advice and helpful criticism
during the development of the theory and in preparing this report.

t Research Scientist, Sr., Aerospace Sciences Laboratory, presently at the Aeronautical Research Institute of
Sweden (FFA).
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H,-H, Creep terms, equations (13)

P.Q.R Right hand sides of equations (14}

Ax Step length in axial direction

Ag Step length in circumferential direction used in the numerical evaluation of H,-H,
At Step length in time

n Fourier coefficient number

ay-tye Coefficients of the finite difference equations (21)

N, Number of “panels” in the circumferential direction

Ng Total number of Fourier terms to be used in the analysis

N, Number of mesh points in the axial direction L = Ax{N_ 1}
Ay, Ag Limits determining the accuracy of the time integration

e Convergence criterion in the iteration procedure

{f} Denotes differentiation with respect to time or load.

oy Differentiation with respect to the axial coordinate x

oy Differentiation with respect to the circumferential coordinate ¢

Dimensions: In the specific examples below the dimensions of millimetres, kilograms and hours were used but,
naturally, any dimensional system may be utilized.

INTRODUCTION

THe soLuTION of the general shell equations is very complicated, particularly if non-
symmetric loading is considered, and even for the case of elastic shells, solutions became
available only recently. A first analysis was presented by Kalnins [1], who solved the linear
equations for a shell of revolution under arbitrary loads. He separated the variables by
expanding them into Fourier series with respect to the circumferential coordinate and thus
obtained a series of uncoupled ordinary differential equations. These were solved by use
of a numerical method. Such separation of the variables is however, in general, possible
only in the linear case.

In a recent report, Ball [2], treated the same problem, but, in addition, the geometrically
non-linear terms were included in the analysis. The equations were solved in a way similar
to that by Kalnins. The effect of the non-linear terms was taken into account by use of an
iterative method. As non-linear effects were included, the analysis can predict the collapse
loads of the shell.

A third approach to the problem of shells of revolution under arbitrary loads was
presented by Stricklin, et al. {3] who used a finite element method to calculate deformations
and stresses.

The problem of creep in shell structures has attracted an increasing interest in recent
years. So far, however, the attempts to solve the problems theoretically have been limited
to special cases such as axial symmetry [4-10]. In most of these attempts, the deformations
have been calculated in a direct way as functions of time [4-9], while in [10] the results in
plastic buckling of shells were extended to the creep case by use of isocronous stress—strain
curves,

A first attempt to analyze the creep behavior of a cylindrical shell under arbitrary loads
was made in [11] and the present work is a continuation of that effort.

The governing equations for a circular cylindrical shell subjected to secondary creep
are derived. The general procedure of [12] is followed. Non-linear terms are retained in
the analysis and the effect of non-uniform temperature distributions and initial imperfec-
tions are included. The method of solution of the general set of non-linear partial differen-
tial equations is similar to that by Ball [2]. The non-linear effects are taken into account
through an iterative procedure in which the non-linear terms at a certain iteration step are
determined from the solution obtained in the previous step, or, for the very first step, from
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the linear solution. The non-linear terms may then be added to the external load terms and
can thus be regarded as pseudo loads. By expansion of the deflection and the load terms
into Fourier series with respect to the circumferential coordinate, a series of sets of ordinary
differential equations is obtained, one set for each Fourier index. As these sets are derived
from the “linearized” general equations, in which the non-linear terms are regarded as
pseudo loads, they can be solved independently of each other. The coupling, which does
exist between the different sets of equations is accounted for through iteration.

The loads of the elastic shell are applied in small steps and the integration in time in
the presence of creep is carried out by use of small time steps. For each incremental load
or time step, the non-linear terms from the solution at the previous step are used as a first
estimate. An iterative procedure is then applied until convergence is obtained.

ASSUMPTIONS

The following assumptions are made:

1. The material is characterized by linear elasticity according to Hooke and secondary
creep governed by the power law.

2. The shell wall can be replaced by a double membrane model, Fig, 1; this is commonly
done in problems where creep is involved.

3. Normals to the undeformed middle surface remain straight and normal during the
deformation of the shell.

4. Terms representing geometrical non-linearities are included in the kinematics
relations and in the equations of equilibrium according to the Donnell approxima-
tion.

5. Radial stresses are negligible.

THEORY

The derivation of the governing differential equations was done along the lines of
Ref. [12], Chapter 5. However, second order terms are retained in the equations of equilib-
rium and kinematics and a secondary creep strain component is introduced in the relation
for the material behavior.

Middie
surface
urie Axis of

cylinder
b/2

=7

FiG. 1. Definition of the double membrane model.
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Material properties
The material is assumed to be isotropic, the elastic part of the stress-strain relation being

governed by Hooke’s law. Furthermore, the creep law is required to be of the form:
) ,
é=—+Bo"+nT. n
E
The extension of (1) to the case of two-dimensional stress can be written as:
1

&= 5(6,—v6,)+ BB Vo, ~fo,)+nT
1 .

by = 56, =160+ BBD™ o, ~}o,) +nT @
21 +v), —

Fap = = tat 3BBDMT VA,

where the stress invariant I is defined by
I =02=4%ol+0l—0,0,+31%,). 3)
Equilibrium

The internal and external forces and moments acting on a shell element are defined in
Figs. 2 and 3. The conditions of equilibrium yield the following four equations:

RN, +N,, = —p,R
RN,+R*N,,—M,~RM,, = —p,R*
M,;+RM;,+RM, +R*M.+RN, = (N,w+RN, W) +(R*Nw +RN_,wY+p,R?* (4)
RN,,~RN, +M,, = 0.
Here the shear forces have been eliminated. The linear terms of these equations are identical

to those by Fliigge [11].

Sandwich shell model
The sandwich shell model is utilized in the analysis. It was shown in [9] that if the
distance between the two membranes is chosen such that the bending stiffness of the

@+ @ dx NN dx

F1G. 2. Definition of the internal forces.
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M+, d,\

F1G. 3. Definition of internal moments.

model is the same as that of the real shell, use of this model leads to an estimate of the
critical time in creep buckling which is very close to that obtained with more accurate
multi-membrane models. Hence it is assumed that, see Fig. 1:

b = h/\/3. ©)

Deformations

According to Fliigge [12], pp. 212 and 469, the strains are related to the displacements
in the following way:

(e, =uw —zw" +iw?
1 z w’ w 1 R
= —p —— —_— W 6
! %= R "RR+z R+z 22" ©)

1
w4 —=ww.
R

o +R+z, z+ z
"= R¥z R R R+:z

In the sandwich model the strains are represented by the values at the midpoint of
each layer, that is z, = b/2 and z, = —b/2, where z; and z, are the z coordinates of thé
outer and inner membranes respectively. Insertion of these values and rearrangement of
the equations yield the following strain—displacement relations

-

Ex1—Exz = — bW’

Eer 46,0 = 22U +w?

4
Epr—Ep2 = —Ekw"—gkw
2.2, .2 1.
A 8¢1+8¢2=EU +Ekw +Ew+ﬁw2 N
4 . b, 2b ,
Yx(pl—Yx(pZ = _Bku +§U _KW

2 2
Yxo1t Vxp2 = ﬁu‘+2v’+ 2kw"+EWIW .
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Assembling the equations
The following notations will be used below :

D = Eh/(1—?) (8)

K = ER¥/12(1 —v?) . 9
2 2

o K _ (10)

DR? 12R? = 4R?

The relations between forces and bending moments and stresses are:

K2
N, = f 0',,(1+£) dz = g[ox,(l +\/k)+ax2(1 — k)]

—h/2

hf2 h
N, = f 6,dz = 5[0(,1 +0,,]

—h/2

f ( )dz— Trpr(L+ /K) + Tepa(1 = /K)]
h/2

= f [rx(pl +Tx(p2]
/2 (1
M, = — f ( )zdz— RN ENDREREN )

h/2
h/2

hb
M,= — J o,zdz = —T[a“,1 —0,2)

—h/2

I

—h/2

W2 hb
M, = — f rx,,,(l-}-%)zdz S aLIENL S ENT)

"2 hb
M, = — J Tz dz = ——4—[1,“,,1 — T2l
—h/2

The relations above define the complete set of governing equations for a circular cylindrical
shell. It is convenient to work with a set of equations in terms of the deformation compon-
ents u, v and w. Therefore, the strain rates, given by (2), are inserted in the kinematic expres-
sion (7). The result is a set of six equations for the unknown stress rates ¢, —1,,,, which,
after reduction, yields:

(. E 2v L Ay 2y
Gy = A= )|:2u +~v bw —ka +i(1—\/k)w

é

0
ta '2+§5 6—w2+H1+H2+v(H3+H4)]

. E S 2y, Ay 2 .
Gep = m[zu g +bw +3~kw +E(1+\/k)w

6

0
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E 2 4 2
= —— 2w’ + =0~ bW — kW + (1 - JkW
21— vz)[ R pF g VH

@ , 18
+v—é—tw2+7{—26—w2+v(H1+H2)+H3+H4]

E S 2y, A 2 .
= 5(_ITZ)[ZW + R0 IV Tl +§(1+\/k)w
0 2, 13
+v6t 2+——R2 6—W V(Hl—Hz)—H3+H4]

E 2 .o . i
= aiay)| RO VR 2L+ 5 =2k R

290
+——(ww)+H5+H ]

E
Hi+v )[ (1+ k)i +2(1 — k) + 2/ k(2 + JkW"

20 .
4‘}5 EE(VVVV)—-f154-116].

Here the “creep terms” H,~H g are defined as:

Hy,= - [3(311)("'_ 1)/2(ax1 —%0¢1)¢B(3Iz)(m_ 1)/2(%2 “%‘%2)‘*’ 'ITl :F'1Tz]
H3,4 = - [B(311)(m_ 1)/2(o.¢1 _%axl)$ B(3Iz)(m_ ”/2(0’(4:2 —%sz)‘l' 'ITl '*_‘ﬂTz]
H5,6 = - 33[(311)("'— ”lzfx(pl + (312)("'— 1)/21'x¢2]-
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(12
contd.)

(13)

By combination of (11), (12) and the equilibrium equations (4), the governing equations are
finally expressed in terms of the deflection rates #, & and w:

-

de” 4—

u +R—~v + Rvw/' +k

1—-v 1+v
2 2

1—
R3 m+R 3 W)

2
R w0

. 20 o, ... 1 o, , . ..
= —pr (WW) VE(WW)—E(I V)E(WW +w'w)

R? 1—
—T[H’2+VH;+\/k(H’1+vH’3)]+R - ‘H, =P
1+v 1- 3(1—-v) 3—v
R 2 n 200 p
2 " +0"+ R*—— 2 +w +k( 3 R?*p 3 R*w )
R?, 1+v 0 1

’/ (/3 16
D Pe R 5, (Ww)—R—~ 5( W)I—R &™)

R R*(1-
—5[vH'2 +H,+ Jk(vH, + H3)]+ (

[2\/kH +(1+k)Hg] =

Q

(14)
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1- 3- ..
Rvu’+U+W+k vRu/_RSum_TvRZUN+R4WIV+2R2WH+W +2W+W)
2 (14
R 1=v, ¢ d td.
= _l)_ﬁr+R 5 vké%(wrw;~-+w/-2+ W”W“+W”.W.)+R3k‘a—t(wnz+W’WW) con )
0 10 1 ¢

Rk— s 12 —-R v 2y _ o .
+v at(ww +w'"?) 3 vat(w ) R 6t(w )

1 R
+§R3\/k[H’,’ +vH}+ Jk(H3 + vH})] +§\/k[vH'1' +H7)
R R? . .
_E[VHZ +H,] +7(1 —v)Jk[2H s+ JkH]

190 v
+5 5 [(Nw + RN W) +(REN W +RN W) = R.

The fourth of Equations (4) is identically satisfied due to the fact that 7, , = 7,,,. The linear
part of equations (14) is identical with Fliigge’s (Ref. [12], equations (13), p. 219).

Boundary conditions
Four different sets of boundary conditions were considered in the investigation.
Case C1. Simple support.

x =0:
u=v=w=M_ =0
x = L:

15)
v=w=M,=0 (
2n
— N,Rdg = N.
0

Case C2. Classical simple support. In this case an axial force is assumed uniformly
distributed around the circumference.

X =
v=w=M, =
N, = —N/2=R
(16)
x=L:
U=W=Mx=
N, = —N/2nR
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Case C3. Clamped edges.

x = 0:

u=v=w=w=290

x=1L:

<u=w=w’=0 47

—fz N,Rde = N.
0

Case C4. Laterally unrestrained edges. In the study of a long cylinder with local im-
perfections and subjected to uniform axial compression or external pressure, the following
procedure may be applied : Assume that the imperfections are of equal form and amplitude
and are uniformly distributed along the axial and circumferential coordinates. Then the
small portions of the cylinder surrounding each imperfection may be analyzed separately
if the conditions of symmetry are applied at the boundaries. If the imperfections are very
localized the following equations are obtained.

(x=0:

u=v=w-=20

w= f(N,p,,1)

x=L: (18)
<
v=w=0
w = f(N,p,,1)
2n
- N,Rde = N.

o]

Initial imperfections

Initial imperfections play an extremely important réle in certain cases of uniform
loading of cylindrical shells. It is therefore important that the effect of initial defects is
included in the analysis.

In the following, it will be assumed that the shell has an initial radial displacement wq
which is a function of the spatial coordinates. In the equilibrium equations (4) the dis-
placement w represents the total displacement and these equations are thus still valid. On
the other hand, it is assumed that the shell is stress-free in the unloaded state which means
that the strains given by (6) must vanish. As the total deflection w in the unloaded state is
equal to the initial imperfection wy, it is clear that w in the linear part of (6) must be replaced
by (w—wg). Simple geometrical considerations also imply that the non-linear terms are
replaced by for instance 3w’ —wj).

The final equations (12) and (14) were derived by use of (6) through differentiation with
respect to time. As wo = 0, the final equations are thus valid in their original form where it
is assumed that w = w, for zero load.
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Method of solution

In the general equations (14), the non-linear terms and the creep terms were placed on
the right-hand side of the equality sign together with the load terms. It is assumed that at a
certain iteration, the solution at the previous step or the previous iteration cycle is available.
This solution is used to estimate the values of the non-linear terms at the current iteration.
The equations are solved repeatedly until convergence is obtained. The expression defined
by the symbol P in (14) may be written as:

R? ,
P= “‘E‘ﬁx‘{"TNL‘*‘HC (19)

where Ty, represents all the geometrically non-linear terms and H contains all terms
involving the creep functions H;—H. It is assumed that the right-hand sides of the general
partial differential equations may be expanded into Fourier series:

Nfp
P= P0+ Z P"COSHNP(P

n=1

Ng
{ Q=3 Q,sinnNyp (20)
n=1

Np
R=R,+ ) R,cosnNpo.

n=1

Here the expansions for the external load terms p,_are given for the case to be analyzed.
The evaluation of the pseudo load terms Ty, involves an expansion of the product of two
Fourier series into a new series. This evaluation is done analytically as shown in Appendix A.
The creep terms H are functions of the stresses taken to the mth power, where m is the
creep exponent. These functions can be evaluated analytically only for odd integer values
of m. As m is in general a non-integer, a numerical integration scheme was used in the
evaluation of the Fourier terms of the creep functions. See Appendix B.
The solution of equations (14} is represented by :

NF
l.l(x, (P) = UO(X)+ Z ""n(x) cosn NP(p
n=1

Np
{ Ux, @) = 6o(x)+ D B,(x)sinn Npg (21)
n=1

NF
WX, @) = Wo(X)+ Y, W,(x)cosn Npep.
n=1

By insertion of (20} and (21) in the general partial equations {14}, which were “linearized”™
by regarding the non-linear terms as pseudo loads, a series of sets of ordinary differential
equations is obtained, one for each Fourier index n. The solution of these equation systems
is obtained by use of a finite difference method. Application of the commonly used central
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difference expressions leads to the following form for the general equations:
alw“.. 2 +azd”_ 1 +a3f}ﬁ.. 1 +a4\'ir’p_ 1 +a5ﬁ'x +a6ﬁﬂ+ 1+ 072:’”.4, 1 +08W#+ 1 +a9“’”+2 = P"

Ayolly— 1+ 8310y +81aW,_ 1 +8130,+814W,+8yslly s 1 Ha 160,01 Fa17W, 0 = Q, 22)

ArgUy-3+a10W, 2+ ds0l,— 1+ a0y +A23W, 3 T A530,+ AqW, + A58y 4

+ay604+1 T A27W, 11+ aogll, 12+ a20W, 12 = R,

There is one set of these equations for each Fourier index n at each interior mesh point u.
The boundary conditions provide eight additional conditions for each Fourier index.
These conditions apply for the mesh points at the edges, 1 = 1 and u = N, and also modify
the general equations (22) at the neighboring points y = 2 and u = N,—1. As an example,
the boundary conditions corresponding to case C3, equations (17) at the edge x = 0 give:

[ x=0=

iy =

Uy =

W, =

a, — az— 154,

- ) . 23
as = 3a, (coefficient of w,)

ag = ag—05a, Changes in the
v coefficients of the general
@z3 — dz;— 13459 equations at point u = 2.

A4 = Az4+3a,9

ay7 = az7-05a,9

\

Equations (21) form, together with the appropriate boundary conditions, a set of algebraic
equations with a strongly banded matrix as shown in Fig. 4, one set for each Fourier index.

ot

1 [w]

1 Rl

}Mesh point | v, P,

¥y Q,

XX X X KK X XXX X ] w, R,

XX XXX XXXX Mesh point 2 u, P,
XXXX XXXX v,

XX XXXX XXXXXX w5
x XXX XXXXXX 03
T oxxoxx xxxx x fvyl =
XX X XXX XXX XXX ws
*th XXX XX XXXX LLI; U,
XXXX XXXX Vs
# % ¢ 5 & 50 00 0 2SS0 L]
e 'El -
B EREEREREEILEEEEE] A
| Band width I5elemems|
I |

F1c. 4. Matrix of coefficients in the system of algebraic equations for the deflection rates 4, ¥ and w.

A EEAED)

|
{
i
L
f
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These equations are conveniently solved by means of Gaussian elimination and as the
coefficients g, in (22) do not change from one iteration to another, this elimination need
be done once only for a given case. The method used is described in [13]. The factored
matrices are stored throughout the computations and are used to operate on the successively
changing right-hand sides.

Flow of calculations

The general equations (14) are valid for the analysis of stresses and deformations in a
cylinder subjected to creep. However, if the creep terms H; are disregarded and (') is inter-
preted as differentiation with respect to some loading parameter p, the equations are valid
for an elastic shell subjected to changing external loads.

The computer program developed for the numerical analysis [13] can handle problems
involving any number of load changes separated or followed by creep periods during which
the external loads are constant. In general, it is possible to treat problems of creep under
continuously varying loads, but it was shown in [14] that such a procedure is not economical
because it requires a very small time step. It is therefore preferable to approximate the
load history by a step function.

The analysis is carried out along the following lines: First the general input data are
read into the program, together with initial imperfections, if such are included. Then the
load changes are read in and the initial load step is prescribed. The incremental deflections
and stresses are computed for each incremental load step by application of an iterative
procedure. The first approximation is provided by the solution obtained in the previous
load step or, for the first load step in each loading sequence, by the linear solution. A
convergence criterion is applied to each Fourier coefficient at some fixed meridional
coordinate. It is required that

Wv+1

oy

w

—1‘<e (24)

where e is an input parameter.

In the creep case it is necessary to choose a sufficiently small time step in order to ensure
an adequate accuracy. On the other hand, a too small time step leads to higher computer
times and therefore a condition similar to the convergence criterion (23) was adopted :

wv+1

oV

A <

—1)< A, (25)

If this condition is not satisfied, the time step is multiplied by either a factor of 1 or 2,
depending on whether the ratio is bigger than A4, or less than A;. Suitable values of e, A,
and A, were determined by repeated computations with successively modified values of
these parameters. An adequate accuracy for most purposes was obtained with e and
A, ~ 0:01-0-02 and A, ~ 0-02-0-05.

RESULTS

A limited numerical analysis has been performed which demonstrates the applicability
of the program.
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Collapse of elastic shells.

In the classical theory of cylindrical shells subjected to uniform pressures, the buckling
load is obtained through solution of an eigenvalue problem. However, it is well known that
experimentally determined buckling pressures are always lower than the classical load.
This is due to the fact that shells are sensitive to initial defects, which are always present in a
real shell, and the classical theory was developed for perfect shells. The load—deflection
characteristic of a cylindrical shell under axial compression is shown in Fig. 5a. With
increasing load, the amplitudes of the deformations caused by an initial imperfection will
grow until collapse occurs and the buckling load is extremely sensitive to the amplitude of
the imperfection. This behavior is different from that of an elastic column, Fig. 5b, for
which the buckling load P is independent of the initial imperfection.

As the present analysis takes initial defects into consideration, it can be used for calcula-
tion of collapse loads. In particular, the buckling load obtained should agree with the
classical solution independently of the shape and size of the imperfections, provided these
are sufficiently small. A small deviation from uniformity of the external pressure would

———— Classical buckling load

Increasing imperfection
amplitude

Load P

Load —deflection curves for
imperfect cylinders

Deflection
FiG. 5a. Load-deflection characteristic of an imperfect cylinder.

Perfect column

TIncreasing eccentricity

Load P

Tmperfect columns

Deflection
F1G. 5b. Load—deflection characteristic of an imperfect column.
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have the same effect as an initial imperfection. For verification of the method of analysis,
such an example was analyzed. The collapse pressure was calculated for a cylinder with
R/h = 100, L/R = 1 and E = 5000. According to the classical buckling theory [11] buckling
occurs into 8 waves at a pressure of p = —0051. A small nonuniform pressure was first
applied, given by

Ap = 0-0006 (cos 2¢ +cos 49 +cos 6¢ + cos 8¢). (26)

A uniform pressure was then applied step wise until large deflections were obtained for
small changes in load, thus indicating that the collapse load was approached. The results
of the calculations are demonstrated in Fig. 6 in the form of deflection amplitudes at the
midpoint of the shell, (x = L/2), as functions of the load. It appears that the 8th harmonic
of the deformation function dominates and collapse occurs for a load slightly lower than
the classical buckling load. This result should be expected since the cylinder under external
pressure is imperfection sensitive, although not to the same extent as cylinders in axial
compression.

It has been verified by additional test cases that the same behavior is obtained if initial
non-symmetric imperfections are prescribed instead of a pressure disturbance. Furthermore,
it has been found that if the amplitudes of the initial imperfections are decreased, within

Classical
| buckling
load p.,

[ S—

w,(Lr2)

Components of the laterol deflections,

|
|
|
|
|
|
|
|
|
|
|
|
|

|
o] 02 o4 06 0-8 -0

P

F1G. 6. Load-deflection curves for a cylinder with R/h = 100, L/R = 1 and E = 5000 subjected to
radial pressure.
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practical limits, the classical buckling load of the shell is approached. Severe imperfections
on the other hand can lead to drastic reductions in the collapse load.

Collapse under creep

A cylindrical shell subjected to non-uniform external loads will, in the presence of
creep, develop time dependent deformations and may eventually collapse. An example is
given here which demonstrates the nature of the solution for a cylinder under circumfer-
entially varying radial pressure:

() Non-uniform external pressure. A cylinder with L/R = 5, R/h = 100 and E = 5000
is subjected to a non-uniform radial pressure of the form:

p, = —0:001 cos 2¢. 27)

Under uniform external pressure, this cylinder buckles at p, = —0-0093 according to the
classical theory. The creep response to the nonsymmetrical load is demonstrated in Fig. 7.

100 r

Cylinder under
cos 2¢ loading

p=p, cos 29

- -

w,
I Ay - - —

T l1l|[l|
-~
-

Components of the lateral deflection rate,
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0-01 |

0004 1 i i H I
Q 8 18 24

rx 1074
FiG. 7. Deflection-rate history of a cylinder under non-uniform external pressure. R/h = 100, L/R = §,
E = 5000 and n = 5-8.
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The amplitudes w,, in the Fourier expansion for the radial deflection rate w at the mid-point
of the shell are shown as functions of time. It may be noted that although the applied load
contains only the second harmonic, equation (27), displacements occur in higher harmonics
as well. These are, however, quite small and collapse occurs into 2 waves. It is interesting
to notice that although the deflection rates are large at the time r = 195 x 1074, see Fig. 7,
the total deflections are still very small. For an outside observer, collapse would therefore
seem to occur nearly instantaneously.

(b) Uniform radial pressure, imperfect shell. It was stated in the previous section that in
order to predict a non-symmetric collapse of a cylindrical shell by use of the preseat method,
it is necessary to prescribe a certain non-symmetric disturbance. It was also stated that in
the elastic buckling of cylinders the analysis will provide a buckling pressure smaller than
or equal to the classical buckling load as soon as some type of non-symmetric disturbance
is prescribed which allows the critical mode shape to develop.

In the presence of creep, the critical time of a shell corresponds to the critical load in the
elastic case, but the value of the critical time is even more dependent on the type and
magnitude of the initial imperfection. In particular, the critical time of a cylinder under
external pressure approaches infinity if the imperfections tend to zero. The same behavior
has been found in the creep buckling theory of columns [15] and [17], which, as was pointed
out above, are not imperfection sensitive in elastic buckling. According to [16], the critical
time in creep for an idealized H-section column is approximately: * = ClIn (1 + 4/a})
where C is a constant and a, is the initial imperfection amplitude.

In the following examples, the large influence on the creep behavior of the shape and
magnitude of an initial imperfection is demonstrated. It may be assumed that a cylinder
under radial pressure is sensitive to imperfections of the form:

N

wp = ( Y wo, cos n(p) sin 7% (28)
n=0

The resuits of a few calculations in which this type of imperfection function is included are
shown in Fig. 8. The cylinder, L/R = 2-1 and R/h = 27 was loaded by a uniform pressure
equal to one quarter of the classical buckling load. Classical buckling theory predicts buck-
ling into 4 waves. The imperfection functions used in the three cases are included in Fig. 8
which gives the amplitudes w, at the midpoint of the shell as functions of time.

In case 1, the coefficients in the Fourier expansion for the imperfection function were all
equal. The critical time in creep is according to Fig. 8, 250 sec and buckling occurs into
4 waves. The imperfection function used in case 2 is the same as that of case I, but the
amplitudes have been increased by 25 %,. A calculation of the elastic collapse load indicated
a small difference between the two cases; the critical load was about 759, of the critical
load for the perfect cylinder in case 1 and 709 in case 2. However, the critical time is
according to Fig. 8, decreased by approximately § of that of case 1. The critical time is
thus very sensitive to the imperfection level.

In example 3, a different imperfection shape was assumed with a large component in
the second harmonic. Also, the amplitude of the 4th harmonic is bigger than that of the
previous examples 1 and 2, but the higher harmonic components are small. Although the
total amplitude of the imperfection is much larger than those of the previous examples, the
critical time is much higher, approximately 1000sec. This example demonstrates the
extreme sensitivity of the creep behavior on the shape of the imperfection.



Creep buckling of a cylindrical shell under non-uniform external loads 107

107

— — e —— —— it —

lon

~6|7

10

w, ler

-==-== ~0-0020(cos 2¢p +cos 4¢+cos 6¢ +cos8¢p) 250
—0-0025(cos 2¢p +cos 4¢+cos 6¢p+cos 8¢p) 170

——— —0-026 cos2¢+0-006 cos 4¢+ 1000
-7
' r_ +0-001(cos 6¢p +cos 8¢}
! 1 |
0 100 200 300 400
Time

FIG. 8. Load-deflection history of an imperfect shell under uniform radial pressure R/h = 27, L/R = 21,
n=35.

(c) Axial compression, perfect shell. The axisymmetric behavior of a circular cylinder
under axial compression has been analyzed by a number of investigators [4-9], which give
the axisymmetric collapse mode and the associated critical time. The present program
was, for verification, also applied to this case.

Results are shown in Fig. 9 for the axisymmetric creep behavior of a simply supported
cylinder with L/R = 1, R/h = 100 and E = 5000. The radial deflection at a time close to
the critical is shown in a 3-dimensional plot. The collapse time may be defined as the time
at which the maximum radial deflection rate, which appears close to an edge, becomes
large. In the present case the critical time is found to be approximately 2-4 hr. This value
agrees with the results obtained from the theory for axisymmetric deformation of cylinders
presented in [9]. However, it is indicated in [9] that in comparison with experimental results
the theory overestimates the critical time. Even for the fairly thick cylinders which do buckle
axisymmetrically, theoretical experimental results can differ by a factor of two. It is possible
that at least part of this discrepancy is due to initial imperfections.

(d) Axial compression, imperfect shell. In the following, the cylinder geometry is the
same as in the previous examples used, but imperfections of the form (28) were added.
Calculations were carried out for two cases with the Fourier indices 0,4, 8, . . ., 16 included
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FiG. 9. Radial deflection pattern of a perfect cylinder subjected to axial compression. R/h = 100,
L/R =1, E =5000,n = 58,1 >~ 22hr.

in the series expansion. The amplitudes of the Fourier terms in the initial imperfection
function were all given identical values for each case. Two imperfection levels were investi-
gated, namely wy = —0-05 and w,, = —0-10. These initial deformations are shown in
Figs. 10a and 10b. The critical times obtained in the analyses were respectively ¢, = 1-3
and 0-6 hr, which should be compared to the time f, = 24 hr obtained for the perfect
shell. It is evident that the presence of an imperfection of the form used (28) may have a
drastic influence on the creep behavior of the shell.

The deformation patterns of the shell in the two cases are shown in Fig, 11 at times
close to the critical. It is found that the symmetrical deformation mode is fairly well de-
veloped in the first case Fig. 11a and a fairly large, nearly symmetric bulge appears close to
the edges of the cylinder. In the second case the non-symmetric deformation modes
dominate.
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FIG. 10a. Initial imperfections for cylinder with wy = —0-05.

These observations agree qualitatively with those of the experimental investigation
of [19]. There it was found that cylinders with approximately the same geometry as those
used in the present examples would develop a visible, nearly axisymmetrical bulge close
to the edge shortly before collapse occurred. For cylinders with R/h 2 40, a non-symmetric
buckling pattern developed. It was, however, also observed in some tests that bifurcation
buckling occurred before a visible edge deformation had developed, which, in accordance
with the results of the second case above, could have been caused by fairly severe imperfec-
tions.

In a last example, a cylinder with R/h = 100, L/R = 1 and with boundary conditions
according to equations (18) was studied. A local imperfection with a length of 209, of
the total length and containing the Fourier terms No. 4, 8, 12 and 16 was assumed which
implies that this imperfection was repeated over 90° arcs. The amplitudes w, were
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F1G. 10b. Initial imperfections for cylinder with wy = —0-10.

chosen equal to —0-01. The applied stress was the same as that used in the previous
examples, namely ¢ = 12 kg/mm?2. The critical time obtained for the imperfect cylinder
was 1, ~ 6 hr. The radial deformation immediately before collapse is shown in Fig. 12,
As the critical time in this case is higher than that obtained for a perfect cylinder buckling
axisymmetrically due to disturbances at the edges it may be concluded that the special
type of imperfection assumed is not critical for the cylinder.

CONCLUDING REMARKS

A theory was presented for the analysis of the creep behavior of circular cylindrical
shells under non-uniform loads. As non-symmetric initial imperfections are considered,
the analysis is also useful for calculation of the general, nonsymmetric mode of creep
collapse of cylinders under uniform loads.
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F1G. 11a. Radial deflection pattern of an imperfect cylinder subjected to axial compression. R/h = 100,
L/R =1, E = 5000, n = 5-8, wo, = —005, t ~ 1-2 hr.

The computer program was verified for the elastic case by comparison with known
solutions. It was found that the collapse load predicted by use of the analysis approached
the classical buckling load when the initial imperfections were decreased towards zero.

In creep buckling, the critical time was found to depend on the amplitude and shape
of the imperfection. In particular, the critical time of a cylinder under axial compression
was found to decrease substantially in comparison with that of a perfect shell if initial
imperfections of a certain shape and with an amplitude of less than } of the wall thickness
were introduced. The critical time of a cylinder under radial pressure tends to infinity for
infinitesimal imperfections. Hence it appears that a rigorous solution of the problem of
creep buckling of cylindrical shells under uniform loads can only be obtained if the initial
imperfections are considered.
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FiG. 11b. Radial deflection pattern of an imperfect cylinder subjected to axial compression. R/h = 100,

L/R = 1, E = 5000, n = 58, w,,

—~0-10, t ~ 0-55 hr.
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APPENDIX A

Evaluation of the product of two Fourier series

In the analysis above, the problem of expressing the product of two Fourier series in
terms of one arises. Thus, the coefficients C,, are sought:

N1 NF NF
Yy C,cosmp = (Z a, cos n(p)( Y. by cos k(p) or (A1)
o n=0 k=0

m=

NF

N1 NF
> C,sinme = ( a, sin n(p) ( Y bycos k(p) . (A2)
o] 0 k=0

m= n=
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The product may be evaluated according to:

NF sin NF sin NF NF sin sin
( ";0 o {COS} " )(,;0 P {COS} "= ,.go k;o b {cos} e {cos} ke (A3)

where either sin or cos is used.
Now, the well known trigonometry functions

2 cos A cos B = cos(A+ B)+cos(A— B)
(A4)

2sin A sin B = —cos(4 + B) -+ cos(A — B)
can be applied, yielding:

NF NF : 3 NF NF
D) a,,bk{sm} n(p{sm}kfp =§ Y Y +abcosin+kyp

n=0k=0 cos Cos n=0k=0
2NF

1
+cosln—klo) = 3 Y ccosle. (AS5)
=0

APPENDIX B

Evaluation of the creep terms HC

The creep terms given by equations (12) have to be developed into Fourier series. As the
exponent m is an arbitrary constant it is not possible to do this operation in the same way
as for the non-linear terms without much additional labor. Therefore, the Fourier coeffi-
cients are calculated numerically in the following way : First evaluate the stresses from:

NF
01 4= ), 6,008 AN,
’ (B1)

NF
Gs6= 2, 0,8iInnN 0.
1

Then, the creep terms of equations (12) are evaluated at a number of equi-distant points
NFIS along the circumference. It is assumed that the number of points used is so large that
the creep functions may be approximated by straight lines between these points, which is
also, in a first approximation, assumed to apply to the trigonometric functions. Then we
have

1
H(@; < 9o < @i = Hi+Z6(Hi+l—Hi)(¢_(pi)- (B2)

Now, provided the number of circumferential mesh points is sufficiently large, the integrals
of equations (25) may be obtained from:

1 PNy NFIS-1 .
F, = f Fdp~— Y FAe. (B3)
Pn,Jo Np i=1
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2 revp,  (sin nN,@ 2 NFIs-t - (sin nN @,
F,,:*f F Thldeo~— ¥ F .Y (B4)
Pn, Yo cos nN ¢ PN, i=1 cos nN ¢,

according to the trapezoidal integration formula. Advantage has been taken of the fact
that F! = FNFIS due to the assumption of symmetry.

(Received 14 November 1968 ; revised 18 April 1969)

AGcrpakT—/daeTca MeToA pacyeTa KPYriblX UHIMHAPHYECKHX OOO0N0YEK, MOABEPKEHHBIX BIMAHHIO
HEPABHOMEPHON BHELWIHEN HArpy3kH. YpaBHEHMs CrpaBeIMBbl AN YMEPEHHO OONbLUMX mepeMeleHuit u
YHUTBIBAKOT BTOPOCTENEHHYIO MMOJI3Y4eCTh. YYUTBIBAKOTCA Takxke TepMuveckune 3pdekTsl U HavanbHbie
HenpaBuIbHOCTH.

INMpuuuMas BO BHUMaHUE HESIMHENHbIE ODLLME yPAaBEHHs, HCTIO/L3YETCH HTAPAUMOHHBIN CIOCOD YHCEeH-
Horo pacdyera. PaccMaTpuBaloTCsl, KaK M3BECTHbIE, HEJIMHEHHBIE UYNIEHB! 1IPU ONpENENeHHON HTepaluu,
NoNyYEHHbi€ paHbLie B IPEAbIAYLICH HTEPALMM. MOXHO MX PACCMAaTPMBAThL B Ka4€CTBE NCEBAO HAIPYy3KH,
npu/laraeMple B CMBICAE€ Harpy3ok K JeHCTBUTENBHbIM YWIEHaM Harpy3ku. Pa3nararorcs nepeMerHble
3THX JIMHEAPH30BaHHLIX AMD(EPHUKANIBHBIX YDABHEHKI B psiabl Pypbe, UCIIONB3YS MONAPHYKO KOOPAHHATY.
B pe3yabTate nofy4aeTcs pag cucteM obbIKHOBeHHbIX (D depeHLMaIbLHBIX YPABHEHHI, 10 OAHOM cHCTeMe
aas xaxgoro kodbduunenta ¢ypbe. PemaloTcs cucTembl ypaBHeHuM, MCNOJb3Yyd METOA KOHEYHBIX
pa3sHocTeil. YpasHEHMs PEMAlOTCH HECKOIBKO pa3 Juist KaXAOTO CKayka HATPY3KH WJIH bPEMEHH BIUIOTH
JI0 MONYHYEHHA CXOAMMOCTM.

Pa3paboraHo nporpamMMy 0715 BbIMCAWTENbHON MAIUHHbI M NPOBEPEHO, NYTEM CPABHEHUS, C H3BECTH-
bIMH DELIEHWAMH [t YOPYTOro BbINYYMBIHuA 000/04eK. YKa3blBaeTCA TEOPETHYECKOE IIOBEACHHS
LWIMHADPA [IPH HAJIMYKMHK MON3YYECTH AJIA HEKOTOPOTO YMCIIA Pa3HbIX YCIOBMI HAarpy3ku. B ocobenHoTCH,
HUCCTIEAYETCS peakuuA 00ONOYKM € HaYalbHBIMU HELPABHJIBHOCTAMM, 1IOABEPXKEHHON BIHMAHKIO OJHOME-
pHOM Harpy3ku. s ciydas BHELIHErO JaBIeHUs, KOHCTAaTHPYETCA, YTO KPHTHYECKOE BpeMsl Ype3BblYafiHo
YYCTBHTE/ABHO HA HEMPABMILHOCTH Gopmbl. [JlokasbiBaercs, YTO A1 KOPOTKOrO LHJIHHApA, CKHMAae-
MOro B OCEBOM HanpaBJEHMH, HAIMYHE HAYAIbHBIX HEMPABUABHOCTER COKpALLIAET K 3HAYHTENBHOM cTeneHu
AEHCTBUE MION3YHECTH MO CPABHEHHIO C KDHTHYECKUM BPEMEHEM, COOTBETCTBY FOLUUM OCECHMMETPHYECKOMY
pa3pyleHnio naeanbHoN 0060M04KH.



